
1Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration

PyFITS Version 0.8
21November 2003

PyFITS User’s
Manual
Note: PyFITS is still under development. Some of the content in this Manual may change
in the future.

Science Software Group
Engineering and Software Services

3700 San Martin Drive
Baltimore, Maryland 21218

SPACE
TELESCOPE
SCIENCE
INSTITUTE

Version 1: (14 February 2002)
Version 2: (10 October 2002)
Version 2.1: (21 November 2003)
Written by Perry Greenfield, J.C. Hsu, Warren J. Hack, and Phil Hodge

Copyright © 2003, Association of Universities for Research in Astronomy, Inc.
All rights reserved.

Send comments or corrections to:
Engineering and Software Services
Space Telescope Science Institute
3700 San Martin Drive
Baltimore, Maryland 21218

E-mail: help@stsci.edu

Contents 1

Table of Contents

CHAPTER 1:
Getting Started.. 1

What is PyFITS?.. 1

A First Session... ... 2

Working with Tables ... 4
Row and Column Selection .. 5

Help and Feedback... 6
User Support... 6
Web Page ... 6

CHAPTER 2:
How PyFITS Works ... 7

Setup PyFITS ... 7
How to load PyFITS.. 7
Convention for Usage Examples .. 7

PyFITS Objects and Methods .. 8
Header/Data Units .. 8

Accessing HDUs by Index 8
Accessing HDUs by Name 8
Accessing Multiple HDUs 9

Basic pyfits methods/functions ... 9
Opening a FITS file 9
FITS file summary method 10
Adding an extension to a FITS file 10
Updating a FITS file 10
Writing out a New FITS file 10
Closing a FITS object 10

FITS objects and I/O... 10
Memory Mapping FITS files.. 11
Creating a new FITS file from scratch 11
FITS file validity .. 11

Verification checks 12
fix 12

2 Contents
silentfix 12
exception 12
ignore 12
warn 12

Reading non-compliant FITS files....................................... 13
Working with Headers .. 13

Header Objects... 13
Getting Detailed Header Information 13
Listing all existing keywords in a header 13
Determining the existence of a particular keyword 14
Accessing a single keyword value 14
Safely returning a keyword value 14
Setting a single keyword value 14
Updating or Adding a Header Keyword 14
Deleting a Header Keyword 15

Images and PyFITS memory usage 15
Memory Conservation with Multiple HDUs 16
Updating an HDU in-place .. 16
BSCALE and BZERO ... 16

Working with Binary Tables .. 17
Interactive Session with Sample Table............................... 17
Record formats ... 18
Displaying information about a table................................... 18

Get column definitions for a table 18
Get number of rows in a table 19
Access elements of a record (row) 19
Extract column attributes 19

Additional Methods for ColDefs (column definitions) 19
Using String Arrays... 19
Creating tables.. 20

Creating a table from scratch 20
Creating a new table from an existing table 21

How to extend or grow tables ... 21
Scaled columns .. 21

Appendix A:
Source For Examples ... 23

Sample Table ... 23

CHAPTER 1:

Getting Started
In This Chapter...

What is PyFITS? / 1
A First Session... / 2

Working with Tables / 4
Help and Feedback / 6

This chapter provides an overview of PyFITS’s capabilities and
describes some basic usage for the first time users. More details about how
PyFITS works will be covered in Chapter 2.

What is PyFITS?

The PyFITS module provides a Python tool to allow a user to read,
write, and manipulate FITS files. FITS (Flexible Image Transport System)
is a portable file standard widely used in the astronomy community to store
images and tables. PyFITS provides access to FITS data in any Python
environment, including PyRAF. PyRAF is a Python interface to and a
scripting/programming environment for IRAF tasks.

PyFITS uses the Python paradigm to manage the image/table data and
headers. The data from an image or table extension is converted to a
numarray1 object, allowing array-based operations on the data. PyFITS is
portable to any host architecture and graphics device supported by Python
and numarray.

1. numarray is a Python library, a replacement for Numeric with additional capabili-
ties. It provides access to a wider variety of arrays, including numbers, character strings,
and records (heterogeneous data types, such as a row in a table).
1

2 Chapter 1: Getting Started
A First Session...

We’ll show a few simple PyFITS examples accessing a multi-extension
FITS file. We’ll assume the reader has some basic familiarity with Python.

Input Image

For this first session, the sample FITS file sample.fits is used. This
sample file contains a primary header and 3 extensions: namely, an
extension for science data (SCI), an extension for error values (ERR), and
an extension for data-quality information (DQ). They are all 1024 by 1024
images of single precision floating-point (SCI and ERR) or short integer
(DQ) data type.

Working with Images

1. Start Python in interactive mode and load PyFITS:

% python
Python 2.3 (#2, Aug 22 2003, 13:47:10) [C] on sunos5
Type "help", "copyright", "credits" or "license" for

more information.
>>> import pyfits

2. The first thing is to open the file with the open function:

>>> fimg = pyfits.open(’sample.fits’)

The FITS file has now been opened with the default read-only mode.
The headers are read in and stored in the Python object fimg where fimg is
an HDUList instance, a Python list-like object with one element for each
header/data unit (HDU) in the FITS file. Each element of the list is an
object with attributes of header and data, which can be used to access the
header keywords and the data. This list is in memory; changes made to
fimg will not affect the input image unless it was opened in update mode or
with memory mapping. Chapter 2 will describe the I/O model for PyFITS
and includes a discussion of the memory models for the headers and data.

3. Get a summary of objects in the file:

>>> fimg.info()
Filename: sample1.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 215 () Int16
1 SCI ImageHDU 215 (1024,1024) Float32
2 ERR ImageHDU 71 (1024,1024) Float32
3 DQ ImageHDU 35 (1024,1024) Int16

A First Session... 3
This method reproduces the basic information obtained from the
catfits task in IRAF. This is just one example of how PyFITS includes
functionality usually found in separate IRAF tasks.

4. Examine the primary header. The header attribute is a Header

instance, another PyFITS object. With its ascardlist method, it will
list all cards in the header:

>>> prihdr = fimg[0].header
>>> prihdr.ascardlist()

or
>>> fimg[0].header.ascardlist()

The second or third command replicates another IRAF task, imheader,
by printing out the entire header for examination.

5. Access data in an extension:

>>> scidata = fimg[1].data
>>> scidata.shape
(1024, 1024)

The object scidata points to the data object in the second header-data
object in fimg, which corresponds to the ‘SCI’ extension. As a numarray
object, it can be used like a Numeric array object in Python.

Alternatively, you can access the extension by its EXTNAME:
>>> scidata = fimg[’SCI’].data

If there are more than one extension with the same EXTNAME, EXTVER needs
to be specified as the second argument, e.g.: fobj[’sci’,2].

6. Keyword values can be retrieved by using (Python) dictionary nota-
tion:

>>> exptime = prihdr[’exptime’]
>>> print exptime
1200.
>>> scihdr = fimg[1].header
>>> photflam = scihdr[’photflam’]
>>> print photflam
1.3795e-19

Although keyword names are always in upper case inside the FITS file,
specifying a keyword name with PyFITS is case-insensitive, for user’s
convenience.

7. If you know that a keyword is already present in the header, you can
update its value using the same notation:

4 Chapter 1: Getting Started
>>> prihdr[’filename’] = ’sample_flux.fits’

8. But if the keyword might not be present and you want to add it if it
isn’t, you can use the update() method:

>>> prihdr.update(’filename’, ’sample_flux.fits’)

9. Operate on the extension’s data.

Since image data is a numarray object, we can slice it, view it, and
perform mathematical operations on it. Let’s convert the image data from
counts to flux:

>>> scidata *= photflam / exptime

This command performs the math on the array in-place, thereby keeping
the memory usage to a minimum. (Note: in Python 2.2, the use of "*="
may cause an error, this is fixed in later Python versions.)

10.Write new or modified data and headers to a new FITS file.

>>> fimg.writeto(’sample_flux.fits’)

This takes the version of headers and data in memory and writes them to
a new file on disk, then closes the file. Further operations could still be
performed to the data in memory and written out to yet another different
file, all without recopying the original data to (more) memory.

11.Close the input file:

>>> fimg.close()

That’s it! The sample FITS file has been opened, header keywords have
been viewed and modified, data from an extension read into memory as a
numarray object and manipulated, a new FITS file created, and the original
file closed.

Working with Tables

This section describes how to use PyFITS to work with tables. PyFITS
uses a model for the table data based on numarray. This model allows
PyFITS to work with a table in a couple of usually exclusive ways
simultaneously:

• access a table as an array of records (rows in a table)

Working with Tables 5
• access columns (fields) as numarray objects

Row and Column Selection
Data in FITS tables can be read using the same syntax used for image

data, but the rows are not stored as simple arrays. Here, we show an
example of how PyFITS works with table rows, using the sample table
samp_tab.fits for this illustration. The sample table contains
emission line data, each row containing wavelength, flux, and quality
comment. The entire table can be found in the Appendix for reference.

This example demonstrates several standard operations that would be
performed with a FITS table and its data, namely:

• getting the names of the table columns (line 5)

• accessing a column of data as an array (lines 8 and 9)

• display the first two rows (line 11)

• a column (field) can be accessed either by name or by numeric index
(line 16)

The data in the table can be accessed either by row or by column. For
rows, an object containing all the different types of data from each column
is returned. In this example, the wavelength and flux data are floating-point
values, but the last column contains strings. A column, however, would be
returned by field() as a numarray object of one data type.

>>> import pyfits
>>> intab = pyfits.open(’samp_tab.fits’)
>>> tabdat = intab[1].data
>>> tabcols = intab[1].columns
>>> tabcols.names
[’wavelength’, ’flux’, ’quality’]
>>> photcounts = 7.25e+18
>>> counts = tabdat.field(’flux’) * photcounts
>>> print tabdat.field(’flux’)[:3]
[2.30739012e-13 3.08164112e-13 4.00046911e-16]
>>> print tabdat[:2]
RecArray[
(1789.832, 2.307390e-13, ’good’),
(1789.473, 3.081641e-13, ’good’)
]
>>> x = tabdat.field(0)

Line 1

5

10

15

6 Chapter 1: Getting Started
Help and Feedback

User Support
If you have any question or comment regarding PyFITS, user support is

available through the STScI Help Desk:

• E-mail: help@stsci.edu
• Phone: (410) 338-1082

Web Page
The PyFITS web page:

www.stsci.edu/resources/software_hardware/pyfits

contains related documents and other resources.

CHAPTER 2:

How PyFITS Works

Setup PyFITS

How to load PyFITS
To use PyFITS, the directory containing PyFITS must be found in your

PYTHONPATH. The PyFITS module can be installed in the Python
site-packages directory, in which case, Python will look there by default,
for the module. Otherwise, the environment variable PYTHONPATH must have
the directory explicitly appended.

In a Unix environment, setenv can be used to add the PyFITS
directory to the PYTHONPATH. If PyFITS was located in /usr/local/lib, then
the syntax would be:

 % setenv PYTHONPATH /usr/local/lib/:{$PYTHONPATH}

The second instance of PYTHONPATH in this definition insures that any
previous settings will be preserved.

Once PyFITS has been added to the Python path, start Python, then
import the pyfits module. If you are to work with data, import numarray as
well.

 >>> import pyfits
 >>> import numarray

Convention for Usage Examples
This section includes examples of the usage of PyFITS methods. These

examples will follow what was set up in “A First Session...” on page 2 and
“Working with Tables” on page 4 for images and table examples,
respectively. This chapter uses the following notation:

- fimg = pyfits.open(’sample.fits’)
- prihdr = fimg[0].header
- scihdr = fimg[1].header
7

8 Chapter 2: How PyFITS Works
- hdr: any header object, e.g. prihdr or scihdr

- scidata = fimg[1].data

- intab = pyfits.open(’samp_tab.fits’)
- tabdat = intab[1].data
- tabcols = intab[1].columns

PyFITS Objects and Methods

Header/Data Units
A FITS file consists of one or more Header/Data Units (HDUs). A

simple FITS file consists only of one such Header/Data Unit. Others may
have many HDUs. The FITS standard treats the first HDU a bit differently
than the rest and calls it the Primary HDU. Any subsequent HDU is called
an Extension HDU. When a FITS file is opened in PyFITS, it returns an
HDUList object which has list-like properties, but can only hold HDU
objects.

Accessing HDUs by Index
- Syntax: fimg[index]
- Example: fimg[0]

Like Python lists, HDUList is zero-indexed. If fimg is a FITS object,
then fimg[0] is the primary HDU, fimg[1] is the first extension HDU,
and fimg[–1] is the last HDU.

Accessing HDUs by Name
- Syntax: fimg[extname,extver]
- Example: fimg[’PRIMARY’]

The above example shows how to access the primary HDU by name. It
is equivalent to fimg[0].

In addition, we can access an extension HDU by the value of the
keyword EXTNAME.

- Example: fimg[’SCI’]

This usage will find the extension HDU with EXTNAME=’SCI’. The second
argument extver is optional if each EXTNAME has unique value, but is
required if there are more than one extension HDU’s with the same
EXTNAME.

- Example: fimg[’sci’,2]

This will return the first Extension HDU with EXTNAME=’SCI’ and
EXTVER=2. Also note that the EXTNAME specification is case-insensitive.

PyFITS Objects and Methods 9
Accessing Multiple HDUs
- Syntax: fimg[range]
- Example: fimg[1:6]

Any HDULists object behaves like a Python list, so a user can slice,
replace, insert, or append HDU objects like Python lists.

Only HDU objects (or objects that subclass the HDU class) may be placed
into HDULists. Attempts to insert, replace or append other kinds of objects
will raise an exception.

Basic pyfits methods/functions
This section describes the methods/functions used for working on FITS

files as a single object. They include opening, writing, and closing a FITS
file, getting information on the contents of a FITS file, and adding an HDU
to the file. Table 2.1 lists basic methods used to work with FITS files.

Table 2.1: Basic pyfits methods/functions

Opening a FITS file
- Syntax: fimg = pyfits.open(filename, mode="copyonwrite",

memmap=0)

An HDUList is instantiated (or created) from an existing FITS file by
using this PyFITS library function. There are 4 different file I/O modes.

- readonly and copyonwrite(default) - do not allow the
file on disk to be modified. If memory mapping is not

Method name Action

PyFITS function and class(es)

open(filename) open a FITS file filename, and return a HDUList object

HDUList() instantiate (start/create) an HDUList

HDUList Methods

info() Print out a summary of contents for a FITS file

append(hdu) add a header data unit hdu as an element to the HDUList

flush() update the associated FITS file on disk with the current
version of HDUList in memory

writeto(new_file) write the HDUList object in memory to a file named new_file

close() close the file associated with the HDUList object

10 Chapter 2: How PyFITS Works
used (memmap=0), these two modes are equivalent. If
memory mapping is used, readonly will not allow the
data values being changed; copyonwrite will, but
these changes cannot be written back to the original
disk file.

- update - allow the file on disk to be modified
- append - open the file on disk to allow new HDUs to be

appended or create a new FITS file from scratch. It,
however, will not allow modifications to HDUs that
are already present in the file when it is opened.

Also see “FITS objects and I/O” on page 10 for related issues.

FITS file summary method
- Syntax: fimg.info()

This method prints information about the HDUs contained in the
HDUList.

Adding an extension to a FITS file
- Syntax: fimg.append(hdu)

This method appends an HDU to the existing HDUList in memory. This
change will only be written to disk when this HDUList object is closed
with the close method or updated with the flush method.

Updating a FITS file
- Syntax: fimg.flush()

This method updates the file on disk with the current version of the
HDUList object fimg in memory.

Writing out a New FITS file
- Syntax: fimg.writeto(new_file)

Write an existing HDUList in memory to a new file on disk.

Closing a FITS object
- Syntax:fimg.close()

This method will close the file on disk. If the file was opened in update

or append mode, it will first apply any changes of the HDUList to the file on
disk by calling the flush method.

FITS objects and I/O

Except in the case of memory mapping, FITS objects are treated as a
memory entity. Regardless of how they were created, once they exist, they
maybe be modified in memory (even if the file was opened read-only).

FITS objects and I/O 11
No write mode in open()! Observant readers may have noticed that
there is no ‘write’ mode. This is because any HDUList (including those not
associated with files) may be written to a new file by using the writeto()
method. This includes HDULists opened in any mode.

Memory Mapping FITS files
- Syntax: fimg = pyfits.open(filename, mode, memmap=1)

One may memory map FITS files by setting the memmap argument in
the open function to a nonzero value. Memory mapped files may only be
opened in readonly, copyonwrite, or update modes. Data opened in
copyonwrite mode may be modified but the modifications will not appear
in the original opened disk file. Changes to memory-mapped data in update

mode are not guaranteed to appear in the file until a flush is done or the
HDUList is closed. Changes to headers are not guaranteed to appear in the
file until flushed or closed.

Creating a new FITS file from scratch
- Syntax: hdulist = pyfits.HDUList()

Usually, an existing FITS file will serve as the initial copy of the headers
and data for the HDUList. One way to create a FITS file from scratch is to
simply create an empty HDUList. It can then be populated, either by
appending HDUs copied from existing FITS files or by creating HDUs
from scratch. The first HDU added must be a PrimaryHDU object in order
to generate a valid FITS file.

Example 2.1: Example

 fitsobj = pyfits.HDUList()
 # create Primary HDU with minimal header keywords
 hdu = pyfits.PrimaryHDU()
 # add a 10x5 array of zeros
 hdu.data = numarray.zeros((10,5), type= numarray.Float32)
 fitsobj.append(hdu)
 # save to a file, the writeto method will make sure the required
 # keywords are conforming to the data
 fitsobj.writeto(’myzeros.fits’)

FITS file validity
- Syntax: hdulist.verify()

HDULists objects do not check for self consistency, including headers
and data, at the time changes are made to its content. It is possible to
construct FITS objects that would not be legal FITS as they exist in
memory. For example, one may create an HDUList with only a table HDU.
That would be illegal since a table HDU may never be the first HDU. Or

12 Chapter 2: How PyFITS Works
one may change the data array associated with an HDU so that its size,
shape, or type is inconsistent with the information in its header (or, less
likely, change the header information to be inconsistent with the data).

Verification checks

Consistency checks are performed when the data are written to files or
when the verify() method is called for HDUs. So, calls to verify(),
flush(), writeto(), or close() will result in the HDUs being examined for
consistency with the FITS standard.

First of all, on output, an HDU’s data attributes are checked against its
header. The data will take precedence, e.g. if the data dimension is different
from what is indicated by the NAXIS keywords, the keywords will be
modified to agree with the data. This checking includes NAXIS, NAXISi, and
BITPIX. Similarly, on output, the keyword EXTEND, in the primary HDU is
always fixed, regardless of mode.

The verification modes are:

fix

Sensible changes are made to the HDUList to force it to be consistent.
Changes will include:

• If a TableHDU or an ImageHDU is the first element in an HDUList,
it will cause a basic Primary HDU to be inserted (with no data)

• If the required keywords are missing or out of order, it will fix them.

All changes are reported as messages as they are being performed
during the verification process.

silentfix

Same as Fix, except that no messages are printed.

exception

Any inconsistency will cause an exception.

ignore

Inconsistencies are not checked. ONLY USE THIS MODE IF YOUR
GOAL IS TO WRITE ILLEGAL FITS FILES FOR TESTING
PURPOSES!

warn

Print out what is inconsistent. This is only useful when the verify

method is called (since that method does not attempt to make any changes).
In attempts to write, this mode is identical to exception.

Working with Headers 13
Only headers will be ‘fixed’ when inconsistencies are detected (and the
mode is either fix or silentfix). Data are never changed during
verification.

Reading non-compliant FITS files
There are many FITS files that are not strictly compliant with the FITS

standard. It is our desire to be able to read all reasonable data even if it does
not strictly comply with the standard. Please inform us of examples where
PyFITS has difficulty handling and we will address such cases.

Working with Headers

Each FITS file contains one PRIMARY header, optionally with an
associated image array, and may contain several other headers (one in each
extension HDU) as well. The methods described in this section provide the
means for working with the header keywords

Header Objects
FITS headers consist of a set of ‘card images.’ Each card contains 80

ASCII characters. Most of these cards consist of keyword/value pairs, with
an optional associated comment. There are also COMMENT and
HISTORY cards. PyFITS header objects present two means to access its
content. One is convenient for most usages, and the other gives full control
over all aspects of the contents of a header card. Header objects present a
dictionary-like (as well as list-like) interface that allows easy access to
keyword values.

Getting Detailed Header Information
- Syntax: cardlist = hdr.ascardlist()

To obtain detailed information from a header (e.g., the location of a
keyword or its comments) or to control the contents of a header (e.g.,
where new keywords go or to set comments), use the cardlist interface.

The cardlist object gives full control over the header, but is less
convenient to use, particularly interactively. This object contains the entire
header as formatted in the FITS file itself and therefore can be used to
manually inspect or search the header for information.

Listing all existing keywords in a header
- Syntax: hdr.items()

14 Chapter 2: How PyFITS Works
This header method will return a list of tuples containing the keyword
and value from every card in the header.

Determining the existence of a particular keyword
- Syntax: hdr.has_key(keyword)
- Example: scihdr.has_key(’naxis1’)

It will return 1 if the keyword exists in the header, or 0 otherwise.

Accessing a single keyword value
- Syntax: hdr[keyword]
- Example: prihdr[’naxis’]

This syntax allows the user to print out the value of a single keyword. If
the keyword does not exist, a KeyError exception will be raised.

PyFITS is case-insensitive towards keyword names.

Safely returning a keyword value
- Syntax: val = hdr.get(keyword, default_value)

One may use the get method as an alternative to simple indexing. It has
the advantage of returning the specified default value if the keyword is not
present, instead of raising an exception.

- Example: val = prihdr.get(’texptime’,600.)

Will set val to the value of TEXPTIME, or to the default value of 600. if
TEXPTIME is not present.

Setting a single keyword value
- Syntax: prihdr[keyword] = value
- Example: prihdr[’exptime’] = 1200.

One cannot add new keywords (but see below) this way. This syntax is
for existing keywords only.

Updating or Adding a Header Keyword
- Syntax:

prihdr.update(keyword, new_value, comment=new_comment,
after=keyword, before=keyword)

This method allows the user to update the value of an existing keyword
or add a card with a new keyword to the header. The before and after

optional parameters control the placement of the new keyword in the
header, and will be ignored for an existing keyword.

- Example: prihdr.update(’TEMP2’, 42,
comment="CCD2 temperature")

Images and PyFITS memory usage 15
The example shows how to add the TEMP2 keyword with value of 42 to
the primary header. If before and after are not specified, the new card will
be added at the bottom of the header.

- Example: prihdr.update(’TEMP2’, 42,
comment="CCD2 temperature", after="TARGET")

This will add the TEMP2 keyword after the TARGET keyword in the primary
header.

Deleting a Header Keyword
- Syntax: del hdr[keyword]

- Example: del scihdr[’texptime’]

Delete the TEXPTIME keyword from the science extension header.

Note that all header cards can be accessed by numeric indexing and
most of them by keyword name. So prihdr[0] works as well as
prihdr[’simple’]. If the header has two or more keywords with the
same name (e.g. HISTORY), referencing by name will only access the first
one.

Images and PyFITS memory usage

Astronomical FITS files can be quite large. Some will not fit into the
memory. PyFITS is developed to provide a means of minimizing memory
usage. The most important is allowing memory-mapped data. If the
memmap option is not selected, it is necessary to read the entire data of a
given HDU into memory to access it. But there are means to avoid reading
in all extensions simultaneously.

When a FITS file is opened in any mode, only the headers are read into
memory. Data of a given HDU are read into memory only if there is an
attempt to access it. For memory-mapped dada, memory space is needed
only when the data are scaled, i. e. BSCALE != 1 or BZERO != 0

Example 2.2: Reading data into memory.

 >>> fitsobj = pyfits.open("mydata.fits", "readonly")
After the open, only headers, but not data, are read into
memory
 >>> n1 = fitsobj[1].header[’NAXIS1’]
>>> d = fitsobj[1].data # data of 1st extension is read into
memory

HDULists also has a readall() method which forces all the data to be
read into memory. But if one opens a file and only accesses the data of one
extension, only data for that extension are read into memory.

16 Chapter 2: How PyFITS Works
Memory Conservation with Multiple HDUs
If one must sequentially process a large multi-extension file and produce

a new FITS file with processed images, the technique utilized in Example
2.3 is recommended to conserve memory usage.

Example 2.3: Memory conservation with multiple HDUs.

 >>> infits = pyfits.open(’input.fits’)
 >>> outfits = pyfits.open(’output.fits’. "append")
 >>> for hdu in infits:
 ... # simple copying of input hdu to output
 ... outfits.append(hdu)
 ... outfits[-1].data = 2*hdu.data # double image values
 ... outfits.flush() # write appended HDU
 ... hdu.data = None # free memory in input HDU
 ... # free memory in output fits object
 ... outfits[-1].data = None
 >>> outfits.close()

In this manner, memory is only being used for one extension at a time.
With memory mapping, these sorts of manipulations will not be necessary.

Updating an HDU in-place
If one wants to update an HDU in place, particularly if the header or

data will not change in size, Example 2.4 illustrates how that can be done
with PyFITS.

Example 2.4: Working with an HDU in-place.

 >>> fitsobj = pyfits.open(’mydata.fits’,’update’)
 >>> hdu = fitsobj[’SCI’, 2]
 >>> hdu.data = 2*hdu.data
 >>> fitsobj.close()

BSCALE and BZERO
Image HDUs that have BSCALE with a value other than 1 and a

BZERO with a non-zero value will result in the scaling of the data when
the data are read from the file. If the file is memory mapped this means the
data will be copied into memory (and thus the benefits of memory mapping
do not apply to such HDUs). After BSCALE and BZERO are applied to
data when they are read into memory, these two keywords are removed
from the header. If a user wishes to have BSCALE and/or BZERO in the
final output FITS file, the method scale() can be used for any image
HDU object.

Working with Binary Tables 17
Working with Binary Tables

The data in binary tables (with fixed record sizes) appear as a special
kind of array called record array. Record arrays provide two different ways
of accessing table data: by rows or columns. The advantage of record
arrays is that these two different ways of accessing the data can be used
together without requiring extra copying of data. The data remains (with a
few exceptions to be mentioned later) in the same way it does in a FITS
file, that is, as a repeated series of rows.

Record arrays are inherited from the same base class, NDArray, as
numarrays, and thus can be accessed with all mechanisms that NDArray may
have. In particular, they may be indexed and sliced in exactly the same way
(including use of index arrays). But record arrays also provide methods that
yield numarrays for columns of a table. These numarrays are not copies of
the data in the table, but rather a numarray view of exactly the same data in
the table. On the other hand, this means the record array’s data structure is
fixed. In order to modify it, such as deleting a row or a column, a new table
has to be made

Interactive Session with Sample Table
This session shows how to use PyFITS on a binary table, including:

• opening the table

• accessing the binary table data

• viewing the data in a record (row)

• extracting or viewing the data of a column

This example is based on the table whose columns and data are given in
Table A.1 on page 23. More methods for working with tables are described
later in this chapter.
 >>> import pyfits
 >>> tab = pyfits.open(’samp_tab.fits’)
 >>> tabhdu = tab[1]
 >>> tabdat = tabhdu.data
 >>> # print first record
 >>> print tabdat[0]
 (1789.83203125, 2.3073901188157275e-13, ’good’)
 >>> # print every other record starting at 3rd
 >>> print tabdat[2::2]
 RecArray[
 (1789.114013671875, 4.0004691119440762e-16, ’dead’),
 (1788.39599609375, 4.8213738773963954e-13, ’good’),
 (1787.678955078125, 3.9276061244465643e-13, ’good’),
 (1786.9610595703125, 8.2633308832666397e-13, ’good’),
 (1786.2430419921875, 2.2820289494879242e-12, ’good’),

18 Chapter 2: How PyFITS Works
 (1785.5250244140625, 2.2860970928795243e-12, ’good’),
 (1784.8079833984375, 8.6380837378829955e-13, ’good’),
 (1784.0899658203125, 3.3133559914841348e-13, ’good’)
]
 >>> # obtain a numarray view of the wavelength column
 >>> wavelength = tabdat.field(’wavelength’)
 >>> print wavelength
[1789.83203125 1789.47302246 1789.11401367 1788.75500488
1788.39599609 1788.0369873 1787.67895508 1787.31994629
1786.96105957 1786.60205078 1786.24304199 1785.8840332
1785.52502441 1785.16699219 1784.8079834 1784.44897461

 1784.08996582 1783.73095703]
 >>> # change the first wavelength
 >>> wavelength[0] = 1216.
 >>> # note change in record view!
 >>> print tabdat[0]
 (1216.0, 2.3073901188157275e-13, ’good’)

Record formats
What characters record arrays use to describe records formats is

different than that used by FITS (they are setup to handle any numarray
type as well as chararrays). The mapping between the two is:

Displaying information about a table

Get column definitions for a table
- Syntax: tabcols = tabhdu.get_coldefs() or
- tabcols = tabhdu.columns

The ColDefs object can be instantiated using one of these syntax. This
object contains information about the columns as derived from the header,

FITS record array

L b1

B u1

I i2

E f4

D f8

J i4

C c8

M c16

A a

Working with Binary Tables 19
including: names, formats, units, etc.. These attributes contain the values
for all the columns as a list for each attribute.

Get number of rows in a table
- Syntax: rows = len(tabdat)

Access elements of a record (row)
- Syntax: tabdat[row].field(colname) or

tabdat[row].field(index)

A single element of a record array is a Record object. Fields of a Record

object may be accessed by position or by name.

Extract column attributes
- Syntax: tabcols.info(attribute_name)

Column names are in an attribute of the ColDefs object and a list of them
can be printed using this method. For example, the sample table has
columns named WAVELENGTH, FLUX, and QUALITY. The characteristics for
those columns can be accessed:

Example 2.5: Accessing column attributes

 >>> tab = pyfits.open(’samp_dat.fits’)
 >>> cols = tab[1].columns # same as tab[1].get_coldefs()
 >>> cols.info(’names’)
 name:

[’wavelength’, ’flux’, ’quality’]
 >>> cols.info(’formats’)
 format:

[’f4’, ’f4’, ’a8’]
 >>> # Or use cols.names or cols.formats to get the actual
list.

Additional Methods for ColDefs (column definitions)
ColDef objects also have the following methods: del_col(),

change_name(), change_unit(), and add_col().

Using String Arrays
- Syntax: carr = tabdat.field(char_col_name)

Since tables may contain character columns, the string array in
numarray is used to handle such columns. Unlike Python strings, string
arrays contain items of fixed size. Like NDArrays, they may be indexed
and sliced the same way. The sample FITS table has a character column
named ’QUALITY’ with a width of 8 characters. The character array can

20 Chapter 2: How PyFITS Works
be accessed with the syntax listed above, while Example 2.6 demonstrates
how to print individual items from the string array.

Example 2.6: Printing string array members

 >>> carray = tab.field(’quality’)
 >>> print carray
 [’good’, ’good’, ’dead’, ’good’, ’good’, ’good’, ’good’,

’good’, ’good’, ’good’, ’good’, ’saturate’, ’good’, ’good’,
’good’, ’good’, ’good’, ’good’]

 >>> print carray[1:3]
 [’good’, ’dead’]
 >>> carray[0] = "warm"
 >>> print carray[0]
 warm

Creating tables
- Syntax: newtab = pyfits.new_table(input, header=None,

nrows=0, fill=0, tbtype="BinTableHDU")

Binary table HDUs may be created using this method. Specific attributes
of the new table can be defined upon creation through the use of the
parameters:

• input
a list of Column objects or a ColDefs object

• header
header to be used to populate the non-required keywords

• nrows
number of rows for table (default is to take the largest
array found in input)

• fill
if fill=0 (default), copy the data from input, otherwise
fill all cells with zero or blank

• tbtype
type of table to be created, only BinTableHDU (default)
is supported now

Note that the arrays used to construct the new table are referred to by a
Column list or ColDefs object and it is in constructing either one of these
that the data are provided for the new table. The arrays so provided are
copied to a single data buffer allocated for the new table. Tables, once
created, like other NDArrays, are not resizable. Expanding a table requires
creating a new table.

Creating a table from scratch

One may obtain column definitions from an existing table, or use the
Column object to create a table from scratch, as shown in Example 2.7.

Example 2.7: Creating a table from scratch

Working with Binary Tables 21
 >>> targets = chararray.array([’M51’,’NGC4151’,’Crab
Nebula’,’Beta Pictoris’])
 >>> col1 = pyfits.Column(name=’targname’,format=’13A’,
array=targets)
 >>> col2 = pyfits.Column(’RA’,format=’E’, unit=’hours’,
array=numarray.array([1.,2.,3.,4.]))
 >>> col3 = pyfits.Column(’DEC’,’E’,’degrees’,array=
numarray.arange(4))
>>> tabhdu = pyfits.new_table([col1, col2, col3], nrows=100)
 # write to a FITS file, remember that table cannot be at
 # the primary HDU, so it is necessary to create a minimal
 # primary HDU
 >>> hdulist = pyfits.HDUList([pyfits.PrimaryHDU(), tabhdu])
 >>> hdulist.writeto(’newtable.fits’)

Creating a new table from an existing table

One may wish to extend a table definition in the creation of a new table,
for example by adding a new column as shown in Example 2.8.

Example 2.8: Creating a new table by adding a column to an existing one

 >>> cdefs = tabhdu.get_coldefs()
 >>> cdefs.add_col(col1)
 >>> outtabhdu = pyfits.new_table(cdefs)

How to extend or grow tables
The user can not only access information about a table, but also change

the composition of the table using fairly simple syntax. Example 2.9 shows
how a new table can be created from an old one with additional rows.

Example 2.9: Adding rows to a table.

 >>> rows = len(tabdat)
 >>> cdefs = tabhdu.get_coldefs()
 >>> # copy data to larger table
 >>> outtabhdu = pyfits.new_table(cdefs, nrows=rows+100)
 >>> outtabhdu.data.field(0)[rows:] = 3 # add data for each
column

Scaled columns
In most cases, record array data are taken directly from the table data

buffer. But Boolean columns, columns in an FITS ASCII table, and
columns with TSCAL != 1 or TZERO != 0, are scaled and the scaled
numarrays need extra separate memory space. Users only see and interact
with these scaled arrays. If any of these scaled arrays are modified, the
original (unscaled) data are not updated until being written to disk file.

22 Chapter 2: How PyFITS Works

Appendix A:

Source For Examples
In The Appendix...

Sample Table / 23

Sample Table

Table A.1: Sample Table for Examples

WAVELENGTH FLUX QUALITY

1789.832 2.307390E-13 good

1789.473 3.081641E-13 good

1789.114 4.000469E-16 dead

1788.755 4.908227E-13 good

1788.396 4.821374E-13 good

1788.037 5.600838E-13 good

1787.679 3.927606E-13 good

1787.32 5.556854E-13 good

1786.961 8.263331E-13 good

1786.602 1.577337E-12 good

1786.243 2.282029E-12 good

1785.884 2.358329E-12 saturate

1785.525 2.286097E-12 good

1785.167 1.517201E-12 good

1784.808 8.638084E-13 good

1784.449 5.023870E-13 good

1784.09 3.313356E-13 good

1783.731 2.677191E-13 good
23

24 Chapter A: Source For Examples

	SPACE TELESCOPE SCIENCE INSTITUTE
	Table of Contents
	CHAPTER 1:� Getting Started 1
	What is PyFITS? 1
	A First Session... 2
	Working with Tables 4
	Help and Feedback 6

	CHAPTER 2:� How PyFITS Works 7
	Setup PyFITS 7
	PyFITS Objects and Methods 8
	FITS objects and I/O 10
	Working with Headers 13
	Images and PyFITS memory usage 15
	Working with Binary Tables 17

	Appendix A:� Source For Examples 23
	Sample Table 23

	Getting Started
	In This Chapter...
	This chapter provides an overview of PyFITS’s capabilities and describes some basic usage for the...
	What is PyFITS?
	A First Session...
	Input Image
	Working with Images
	1. Start Python in interactive mode and load PyFITS:
	2. The first thing is to open the file with the open function:
	3. Get a summary of objects in the file:
	4. Examine the primary header. The header attribute is a Header instance, another PyFITS object. ...
	5. Access data in an extension:
	6. Keyword values can be retrieved by using (Python) dictionary notation:
	7. If you know that a keyword is already present in the header, you can update its value using th...
	8. But if the keyword might not be present and you want to add it if it isn’t, you can use the up...
	9. Operate on the extension’s data.
	10. Write new or modified data and headers to a new FITS file.
	11. Close the input file:

	Working with Tables
	Row and Column Selection

	Help and Feedback
	User Support
	Web Page

	How PyFITS Works
	Setup PyFITS
	How to load PyFITS
	Convention for Usage Examples

	PyFITS Objects and Methods
	Header/Data Units
	Accessing HDUs by Index
	Accessing HDUs by Name
	Accessing Multiple HDUs

	Basic pyfits methods/functions
	Table 2.1: Basic pyfits methods/functions
	open(filename)
	open a FITS file filename, and return a HDUList object
	HDUList()
	instantiate (start/create) an HDUList
	info()
	Print out a summary of contents for a FITS file
	append(hdu)
	add a header data unit hdu as an element to the HDUList
	flush()
	update the associated FITS file on disk with the current version of HDUList in memory
	writeto(new_file)
	write the HDUList object in memory to a file named new_file
	close()
	close the file associated with the HDUList object
	Opening a FITS file
	FITS file summary method
	Adding an extension to a FITS file
	Updating a FITS file
	Writing out a New FITS file
	Closing a FITS object

	FITS objects and I/O
	Memory Mapping FITS files
	Creating a new FITS file from scratch
	Example 2.1: Example

	FITS file validity
	Verification checks
	fix
	silentfix
	exception
	ignore
	warn

	Reading non-compliant FITS files

	Working with Headers
	Header Objects
	Getting Detailed Header Information
	Listing all existing keywords in a header
	Determining the existence of a particular keyword
	Accessing a single keyword value
	Safely returning a keyword value
	Setting a single keyword value
	Updating or Adding a Header Keyword
	Deleting a Header Keyword

	Images and PyFITS memory usage
	Example 2.2: Reading data into memory.
	Memory Conservation with Multiple HDUs
	Example 2.3: Memory conservation with multiple HDUs.

	Updating an HDU in-place
	Example 2.4: Working with an HDU in-place.

	BSCALE and BZERO

	Working with Binary Tables
	Interactive Session with Sample Table
	Record formats
	L
	b1
	B
	u1
	I
	i2
	E
	f4
	D
	f8
	J
	i4
	C
	c8
	M
	c16
	A
	a

	Displaying information about a table
	Get column definitions for a table
	Get number of rows in a table
	Access elements of a record (row)
	Extract column attributes
	Example 2.5: Accessing column attributes

	Additional Methods for ColDefs (column definitions)
	Using String Arrays
	Example 2.6: Printing string array members

	Creating tables
	Creating a table from scratch
	Example 2.7: Creating a table from scratch

	Creating a new table from an existing table
	Example 2.8: Creating a new table by adding a column to an existing one

	How to extend or grow tables
	Example 2.9: Adding rows to a table.

	Scaled columns

	Source For Examples
	In The Appendix...
	Sample Table
	Table A.1: Sample Table for Examples

