Contents

A	bstra	act		iv
\mathbf{P}_{1}	refac	e		\mathbf{v}
A	ckno	wledgr	nents	vii
1	Inti	roduct	ion	1
	1.1	A Ver	y Brief History of Visible Detectors in Astronomy	1
	1.2	The C	CD: Astronomy's Champion Workhorse	4
		1.2.1	CCD Operation	4
		1.2.2	Drawbacks of the CCD in Astronomy	7
		1.2.3	Where the CCD Wins in Astronomy	11
	1.3	CMOS	S: Motivation for a New Detector	13
		1.3.1	Overview of CMOS Imager Operation	14
		1.3.2	Monolithic CMOS Imagers	15
		1.3.3	Hybrid CMOS Imagers	16
		1.3.4	Advantages of CMOS Arrays for Astronomy	19
		1.3.5	Disadvantages of CMOS Arrays in Astronomy	22
2	Ove	erview	of Silicon PIN Detectors	24
	2.1	PIN I	Diodes	24
		2.1.1	General Discussion of PIN Diodes	24
		2.1.2	PIN Diode Circuit Equivalent Model	26
		2.1.3	Punch Trough Voltage	27
	2.2	HyViS	SI Detector	29
		2.2.1	HyViSI PIN Diode	29
		2.2.2	The HyViSI Pixel	34

3	Hyl	brid In	nager Features	40
	3.1	Full F	rame Mode	40
		3.1.1	Up the Ramp Terminology	42
	3.2	Windo	w Mode	42
		3.2.1	Variation of Multiple Window Readout Sequences	44
	3.3	Guide	Mode	44
	3.4	Refere	ence Pixels	45
	3.5	Reado	out Electronics: SIDECAR ASIC	49
		3.5.1	Pre-Amplification Stage	51
		3.5.2	Conversion Gain	54
		3.5.3	Averaging Multiple Channels	55
		3.5.4	Noise Performance vs. Pixel Time	58
		3.5.5	Reference Voltages for SIDECAR when Connected to an HxRG	59
1	Lab	orator	w Testing of SiPIN Detectors	62
4	<u>л</u> ац 4 1	Descri	intion of Laboratory Saturs and Daviess Tested	62
	4.1	Divol	Classification and Operability	65
	4.2	4 2 1	Dead or Railed Pivels	65
		422	Hot Pixels	65
		4.2.2	Open Pivels	66
		424	Volcanoes	66
		4 2 5	Summary of Pixels	67
	43	Conve	rsion Gain and Nodal Capacitance	68
	1.0	431	Contributions to the Gain	68
		432	Electronics Gain – G_{AMD} & G_{AMD}	68
		433	Unit Cell Source Follower Gain – G_{HC}	69
		434	Output Source Follower Gain $-G_{OUT}$	69
		435	Net Conversion Gain $-G_{NET}$	71
		4.3.6	Nodal Capacitance – G_{PLVEI}	72
		4.3.7	Results for HvViSI Detectors	73
	4.4	Read	Noise	75
		4.4.1	Sources of Read Noise in Hybrid CMOS Detectors	75
		4.4.2	Noise Reduction Techniques	78
		4.4.3	HvViSI Measurements	81
	4.5	Dark (Current	84
		4.5.1	Sources of Dark Current	84
		4.5.2	Estimating Dark Current	84
		4.5.3	HyViSI Dark Currents	86

		4.5.4	Reset Anomaly in HyViSI	87
	4.6	Quant	um Efficiency	90
		4.6.1	PIN Diode Quantum Efficiency	90
		4.6.2	HyViSI Detective Quantum Efficiency (DQE)	90
	4.7	Linear	tity/Well Depth	92
		4.7.1	Sources of Nonlinearity in HyViSI Detectors	92
		4.7.2	Measurements of Nonlinearity in HyViSI Detectors	93
		4.7.3	HyViSI Well Depths	97
5	Silie	con PI	N Detectors in Astronomy	98
	5.1	Obser	vations with the Kitt Peak 2.1m Telescope	98
	5.2	Data l	Reduction and Calibration	100
		5.2.1	Data Reduction Theory	100
		5.2.2	Reference Pixel Correction	102
		5.2.3	Dark Subtraction	103
		5.2.4	Slope Fitting	103
		5.2.5	Flat Fielding	105
		5.2.6	Combining Dithers	106
		5.2.7	Telescope Calibration with Multiple Windows	106
		5.2.8	Expected Point Spread Function	108
	5.3	Photo	metry	112
		5.3.1	Aperture Photometry	113
		5.3.2	Crowded Field Photometry	116
		5.3.3	High Speed Photometry with Guide Windows	118
		5.3.4	Variability Measurements of BE Lyn	118
	5.4	Astro	metry	122
		5.4.1	Sources of Astrometric Error	123
		5.4.2	Astrometric Reduction	124
		5.4.3	Astrometric Results with H2RG-32-147 and H1RG-022	125
		5.4.4	Astrometric Results with H4RG-10-007	126
	5.5	Telesc	ope Guiding in Guide Mode	127
		5.5.1	Purpose of Experiment	127
		5.5.2	Results without Guide Mode	128
		5.5.3	Results with Guide Mode	129
		5.5.4	Comparison between Exposures with and without Guide Mode	130
		5.5.5	Saturated Pixels	133
		5.5.6	Summary of Results	133
		5.5.7	Discussion	134

	5.6	Near Infrared Response	135
6	Pix	el and Electronic Crosstalk	137
	6.1	Pixel Crosstalk	137
		6.1.1 Mechanisms of Pixel Crosstalk	138
		6.1.2 Measurement via Cosmic Rays	140
		6.1.3 Measurement via Fe^{55}	150
		6.1.4 Measurement via Single Pixel Reset	160
	6.2	Electronic Crosstalk	168
		6.2.1 Column Bleeding	168
		6.2.2 Output Coupling	171
7	\mathbf{Per}	sistence in HyViSI Detectors	174
	7.1	Trap Theory	174
		7.1.1 Hole Capture and Release from Shallow Traps	176
		7.1.2 Hole and Electron Capture from Deep Level Traps	178
	7.2	Latent Images and Persistence	180
		7.2.1 Persistent Charge Emission	181
		7.2.2 Dependence on Flux and Fluence	186
		7.2.3 Dependence on Detector Activity	191
		7.2.4 Dependence on Temperature	192
		7.2.5 Dependence on V_{SUB}	194
	7.3	Semi-Permanent Offsets: Laser Burn-In	198
	7.4	Effect of Forward Biasing	201
		7.4.1 Theory of Bias-Direction Switch	201
		7.4.2 Forward Bias to Full Reverse Bias of $V_{SUB} = 15V$	202
		7.4.3 Incrementing Reverse Bias with $\Delta V_{SUB} = 2V \dots \dots \dots \dots \dots \dots \dots$	205
	7.5	Model, Simulations, and Summary	207
		7.5.1 Phenomenological Description	207
		7.5.2 Persistence Simulations	209
		7.5.3 Summary	214
	7.6	Dealing with Persistence	217
		7.6.1 Persistence Reduction by Design	217
		7.6.2 Reduction After Design	218
Α	Dat	a Reduction	222
	A.1	IRAF Parameters	222
в	Sigi	nal to Noise Ratio	223

\mathbf{C}	Nur	nerical Simulations	224
	C.1	PN Junctions	224
	C.2	Basic Semiconductor Physics	224
	C.3	Numerical Methods: Finite Volume Scheme \hdots	225
	C.4	Results for Abrupt PN Junction	229
	C.5	Cylindrically Symmetric Persistence Simulations $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	233
D	Con	version Gain Reference	236
Bi	Bibliography 23		

List of Tables

3.1	C_{FAC} Values for Individual Detectors $\ldots \ldots \ldots$	48
3.2	SIDECAR Conversion Gain Table	55
3.3	SIDECAR Clocking Table for Averaging Multiple Channels	56
3.4	SIDECAR Operating Parameters at Different Sampling Rates	59
4.1	HyViSI Detectors Tested in the Laboratory	64
4.2	Pixel Type Fractions for HyViSI Detectors Tested	67
4.3	${\rm Fe}^{55}$ Lines from Radioactive Decay $\hdots \hdots \hdots$	71
4.4	Conversion Gains, Nodal Capacitances, and Well Depth of HyViSI Devices $\ \ldots \ \ldots$	73
4.5	HyViSI Well Depths	97
5.1	Details for Observing Runs at Kitt Peak 2.1m Telescope	98
5.2	Filter Characteristics	99
5.3	Measured Magnitude for Landolt Standards	114
5.4	Magnitude Transformation Equations for Landolt Standards	115
5.5	Parameters from M13 Exposures	116
5.6	Variability Parameters for the Delta Scuti Star BE Lyn	119
5.7	Comparison of Astrometric Error with and without Guiding	126
5.8	Comparison of Guide Mode vs. No Guiding	133
6.1	Pixel Crosstalk Parameters for H2RG-001	155
7.1	Parameters for Core-Halo Simulation	212

List of Figures

1.1	Multi-Color Image of M13 Globular Cluster Taken with HyViSI H4RG-10-007	3
1.2	Simple Diagram of a 4×4 CCD	4
1.3	Illustration of the Process of Clocking in a CCD	7
1.4	Cartoon of CCD Destructive Readout	8
1.5	Simplified Diagram of Passive and Active CMOS Pixel Architecture	13
1.6	Simplified Diagram of CMOS Multiplexer and 3T Pixel	15
1.7	Diagram of Per-Pixel Depleted and Fully Depleted Hybrid CMOS Arrays	17
2.1	Diagram of PIN Diode	25
2.2	Circuit Equivalent of a PIN Diode	27
2.3	Resistivity of Silicon as a Function of Doping Density	28
2.4	Image and Cross Section Diagram of HyViSI detector	29
2.5	Diagram of PIN Diodes in a HyViSI Detector	30
2.6	PIN Diode Quantities for Backside Voltage $V_{SUB} = 0 - 10V \dots \dots \dots \dots$	32
2.7	PIN Diode Quantities for Backside Voltage $V_{SUB} = 15 - 35V$	33
2.8	A Mock Schematic of the Full HyViSI Pixel	34
2.9	PIN Diode as Capacitor During and After Reset	35
2.10	HyViSI Pixel Circuit Equivalent	37
2.11	Lateral Diffusion and Blooming in an Undepleted Detector	39
3.1	Ramp Sequence Diagram and Clocking Patterns for HxRG Multiplexers	41
3.2	Window Mode Diagram	43
3.3	Signal of Science and Reference Pixels for H1RG-022 with no C_{FAC}	45
3.4	Difference of Science and Reference Pixels for H1RG-022	46
3.5	Slope Error with C_{FAC}	47
3.6	Difference of Science and Reference Pixels for H1RG-022 after Applying C_{FAC}	48
3.7	SIDECAR ASIC Block Diagram and Photograph	50
3.8	SIDECAR ASIC Development Kit in RIT Laboratory	51
3.9	SIDECAR Amplification Stage	52

3.10	SIDECAR Noise Images: Reset Schemes	53
3.11	SIDECAR Conversion Gain	54
3.12	Multiple Channels Averaged in SIDECAR	57
3.13	Read Noise of H1RG-022 with Multiple Channels Averaged	58
3.14	SIDECAR Images and Histograms with Non-ideal Operating Parameters $\ \ldots \ \ldots$	61
4.1	Deven Used at Rechaster Imaging Detector Laboratows	69
4.1	Elet Field Image Cheming Open Divels	67
4.2	Plat Fleid Image Showing Open Fixels	60
4.3	Diagram of Onit Cell, Bus Lines, and Output of H2RG	09
4.4	Electronic Gain for H1RG-022	70
4.5	Feb5 Histogram for H2RG-001	72
4.6	Temperature Dependence of Conversion Gain with Constant $V_{BIASGATE}$	74
4.7	Simplified Diagram of Noise Associated with Resetting Pixels	75
4.8	Up the Ramp Exposure Diagram with Fowler Sampling	80
4.9	CDS Read Noise Map for H2RG-001 at 100 K	81
4.10	Temperature Dependence of CDS Read Noise for H2RG-001	82
4.11	Read Noise vs. Fowler Pair and Temperature Dependence for H2RG-001	83
4.12	Dark Current Histogram for H1RG-022	85
4.13	Dark Current vs. Temperature for HyViSI Detectors	86
4.14	Pixel Ramp Showing Reset Anomaly in H1RG-022	88
4.15	Reset Anomaly at Different Reset Voltages	89
4.16	Detective Quantum Efficiency of H4RG-10-007	91
4.17	Fringing in Monochromatic Flat Field near 1 μ m	91
4.18	Photon Transfer Curves for H2RG-32-147 with Output Source Follower Enabled	93
4.19	Linearity of H2RG-32-147 and H2RG-001 as a Function of Electrons Integrated on	
	Nodal Capacitance	96
51	Photograph of PIDL Down Mounted to Kitt Book 2.1m Telegoone	00
5.1	Drift of Telescope from Sidereel Tracking Pate	109
0.2 5-2	Emereted Ellipticity and EWHM in Caridian and Unmeided Operation	100
5.3 F 4	Expected Empticity and FWHM in Guiding and Unguided Operation	111
5.4 5.7	Magnitude Plot for Landolt Photometric Standards	115
5.5	M13 Color Magnitude Diagram in g and i	117
5.6	M13 Color Magnitude Diagram in g and y	117
5.7	Magnitude vs. Time for BE Lyn and Reference Star GSC 03425-00544	120
5.8	Magnitude vs. Time for BE Lyn after Normalization by Reference Star and Filtering	121
5.9	Astrometric Error vs. Exposure Time for H2RG-32-147 Observations of Open Cluster	
	NGC 956	125
5.10	Long Time Exposure Taken with H1RG-022 with No Guiding	129

5.11	Long Time Exposure Taken with H2RG-32-147 in Guide Mode	130
5.12	Comparison of Long Time Exposures With and Without Telescope Guiding	131
5.13	Exposure Time Required to Reach Limiting Magnitude	132
5.14	Interpixel Capacitance of Guide Window with Surrounding Pixels	134
5.15	Tri-color Image of Orion Nebula Showing Near IR Response	136
6.1	Cosmic Ray Ramps and Decay of Signal After Incidence	141
6.2	Charge Lost by Pixel in 800 Seconds as a Function of Charge Deposited by Cosmic	
	Ray	144
6.3	Histograms of Time Constant c_n in Cosmic Ray Decays for Different Temperatures	145
6.4	Muon Track Showing Different Charge Loss at Opposing Ends	146
6.5	Dependence of Charge Loss on Depth of Interaction for Extended Muon Tracks	147
6.6	Cosmic Ray Pixels Sharing Charge	148
6.7	No Coupling of Reference Pixels to Science Pixels During Cosmic Ray Event $\ . \ . \ .$	149
6.8	Examples of Single and Multiple Pixel Events from Fe^{55} Exposure $\ldots \ldots \ldots$	151
6.9	Examples of Fe^{55} Distributions from Guess and Check Iteration Process	153
6.10	Pixel Crosstalk vs. Temperature for H2RG-001	155
6.11	Fe^{55} Ramps Showing Charge Loss	156
6.12	Pictorial Plot Showing Loss of Charge After Fe^{55} Hit	157
6.13	Shift and FWHM of Fe^{55} Peak in temperature range 140-170 Kelvin	159
6.14	The Effect of Charge Loss on ${\rm Fe}^{55}$ Spectrum at 170 K $\hfill \ldots \ldots \ldots \ldots \ldots \ldots$	159
6.15	Pixel Crosstalk with Single Pixel Reset	162
6.16	The Effect of Single Pixel Reset on Column Voltage	163
6.17	Charge Diffusion and Persistence in Single Pixel Reset Experiments at Temperatures	
	from 100-180 K	164
6.18	Signal Measured for Pixel Subject to Single Pixel Reset as a Function of \mathbf{V}_{RESET}	166
6.19	Zoom-in of Signal Measured for Pixel Subject to Single Pixel Reset as a Function of	
	V _{RESET}	167
6.20	Column Bleeding in Horsehead Nebula Mosaic Taken with H2RG-32-147	168
6.21	Star Showing Column Bleeding and Threshold	169
6.22	Output Coupling in Mosaic of SAO 117637 Taken with H2RG-32-147	171
6.23	Output Coupling Circuit Diagram	172
6.24	Output Coupling with No Source Follower	173
7.1	Saturn: Saturated and Persistent Images	180
7.2	Temporal and Spatial Evolution of Persistence Structure	183
7.3	Diagram of Core-Halo Persistence Structure	184
7.4	Ramps for Pixels in Region Surrounding Persistence Center	185

7.5	Maximum Persistence Signal in 14 Second Exposure	187
7.6	Minimum Persistence Signal in 14 Second Exposure	188
7.7	Decay of Dark Current in Core-Halo Persistence	190
7.8	Histograms of Time Constants for Latent Image Decays	190
7.9	Latent Image Lasting More than One Hour	191
7.10	Pixel Ramp Showing Reset Anomaly in H1RG-022	193
7.11	Latent Images at Different Values of V_{SUB}	195
7.12	Stored and Excess Hole Populations Under Saturation in Undepleted Detector \ldots	197
7.13	Semi-Permanent Offset in H2RG-32-147 Burned in by Mars	198
7.14	6 Month Decay of Laser Burn-In on H2RG-32-029	200
7.15	Dark Current after Forward Bias and Return to Reverse Bias in H1RG-022 $\ .$	204
7.16	Dark Current after Increasing V_{SUB} in H1RG-018	205
7.17	Toy Model of Charge Density, Electric Field, and Electric Potential in PIN Diode	208
7.18	Drift and Diffusion Currents Responsible for Negative Persistence	210
7.19	Comparison of Ramps and Radial Profiles for Simulated Persistence and Real Data .	212
7.20	Comparison of Simulated Hole and Electron Distributions with and without Drift	214
7.21	Dither Sequence Showing Persistence in all Dither Locations	219
~ .		
C.1	PN Junction Diagram	226
C.2	Results for PN Junction with No Applied Bias	231
C.3	Results for PN Junction Under Reverse Bias	232