Appendix D

Conversion Gain Reference Sheet

The equation relating the number of electrons (e⁻) in a pixel to the recorded data number (DN or ADU) goes as:

$$G_{NET} = G_{PIXEL} * G_{UC} * G_{OUT} * G_{AMP} * G_{A/D}$$
(D.1)

Below is a short reference sheet of the experiments and what each yields.

Fe⁵⁵ Calibration:

Method:	Collect set of exposures that record Fe^{55} hits in the detector.
	Histogram the hit values in ADU. The peak corresponds to 1660 $\mathrm{e^-}.$
Notes:	Value will depend on the gain of the control of A/D converter, G_{AMP} .
Provides:	$G_{net} \ (e^-/ADU)$

Electronic Gain with V_{RESET} :

Method:	Program set of voltages for V_{RESET} . Read detector output while
	reset switch is closed. Plot DN vs. V_{RESET} and obtain slope.
Provides:	$G_{UC}(V/V) = \Delta V_{OUT \ NOSF} / (\Delta V_{RESET} * G_{ELEC})$
	$G_{SF}(V/V) = \Delta V_{OUT SF} / (\Delta V_{RESET} * G_{UC} * G_{ELEC})$

\mathbf{A}/\mathbf{D} or Control Electronics Calibration:

Method:	Use a set of known voltages as input to the A/D converter in control
	electronics.
Notes:	G_{AMP} used here should correspond to G_{AMP} used in the ${\rm Fe}^{55}$ calibration.
Provides:	$G_{ELEC}(V/ADU) = G_{AMP} * G_{A/D}$ – If amplification stages are included
	$G_{A/D}$ (V/ADU) – If amplification stages are by passed
	$G_{AMP} (V/V)$

Well Depth from Saturated Images

Method:	Use an exposure or set of saturated exposures to find the full range
	of the pixels in ADU.
Notes:	The full range is the average taken over all pixels of the quantity
	$FR = I_{max} - I_{min}$, where I_{min} is the pixel value immediately
	after reset and I_{max} is the pixel value before the output becomes
	nonlinear and saturates.
Provides:	WellDepth (ADU)
	$WellDepth\ (e^{-}) = WellDepth\ (ADU) \ *\ G_{net}$